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1 Pipage Rounding

In this lecture, we will discuss a different randomized rounding method called the pipage rounding
method. In the coming lectures will use this as a tool to obtain a better approximation algorithm for
the k-ECSM problem as well as an approximation algorithm for ATSP, the Asymmetric Traveling
Salesperson Problem.

To lead our discussion towards the algorithms for k-ECSM and ATSP, we will discuss the
method for the case of spanning trees, but it also works for other settings. In particular, it can be
used for any matroid polytope, as you will see in the second homework.

1.1 Spanning Tree Polytope

Firstly, we define the spanning tree polytope and analyze some of its properties. Given a graph
G = (V, E), the spanning tree polytope is the convex hull of the indicator vectors of all spanning
trees of G. We have a variable xe for each edge e ∈ E. For any subset of edges S ⊆ E, let x(S)
denote ∑e∈S xe. For any subset of vertices A ⊆ V, denote E(A) as the set of edges in the subgraph
induced by vertices of A. Then, the spanning tree polytope Pst is defined by the following
constraints:

x(E) = |V| − 1
x(E(S)) ≤ |S| − 1 ∀S ⊆ V
xe ≥ 0 ∀e ∈ E.

It is not hard to check that if 1T ∈ RE is the indicator variable of some spanning tree T, then 1T is
in Pst. Indeed, the first constraint is just saying that there are |V| − 1 edges in the spanning tree.
The second constraint is true because for any subset of vertices S ⊆ V, the number of edges in T
in the subgraph induced by S is at most |S| − 1. The third constraint clearly holds. It turns out
that the vertices of Pst are precisely the set of all possible 1Ts over all spanning trees T (which we
will prove soon).

We now define the notion of tight sets. A set of vertices S ⊆ V is tight if x(E(S)) = |S| − 1, i.e.
the constraint (2) is tight for S. For example, V and all one-element sets are tight. Call a tight set
nontrivial if it has at least 2 elements. We show the following lemma:

Lemma 1.1. If A and B are tight sets for a given x and A ∩ B is nonempty, then A ∩ B is a tight set.

Proof. We have

|A| − 1 + |B| − 1 = x(E(A)) + x(E(B))
≤ x(E(A ∪ B)) + x(E(A ∩ B))
≤ |A ∪ B| − 1 + |A ∩ B| − 1
= |A| − 1 + |B| − 1,
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where the first inequality holds because if an edge is in both E(A) and E(B), then it must be in
both E(A ∪ B) and E(A ∩ B); the second inequality holds from the feasibility of x. Hence, all
inequalities are equalities, which implies x(E(A∪ B)) = |A∪ B| − 1 and x(E(A∩ B)) = |A∩ B| − 1,
as desired.

1.2 Pipage Rounding Algorithm

We can now begin discussing the pipage rounding algorithm. Our goal is to round a fractional
spanning tree x ∈ Pst to an integral spanning tree. The idea of the algorithm is simple: while x
contains some non-integral coordinates, we find a direction d such that x + εd, x− δd ∈ Pst for
sufficiently small ε, δ > 0. Then, we move randomly in the direction d until we hit a new tight
constraint. After repeating this process finitely many (in fact, O(|V||E|)) times, we will obtain an
integral solution.

To show that the algorithm works, we first need to prove the following lemma:

Lemma 1.2. Suppose that x ∈ Pst has some non-integral coordinates. Then, there exists some direction d
such that x + εd, x− εd ∈ Pst for sufficiently small ε > 0.

Proof. Contract all edges with xe = 1 and delete all edges with xe = 0 so that 0 < xe < 1 for all
edges. Since x has some non-integral coordinates, the remaining graph is nonempty. Let S be any
minimal nontrivial tight set.

We say that two sets A and B cross if A ∩ B, A− B, B− A are all nonempty. Observe that if
T 6= S is a tight set that crosses S, then |T ∩ S| = 1. Indeed, if |T ∩ S| ≥ 2, then by Lemma 1.1, we
know that T ∩ S is a smaller nontrivial tight set, which is a contradiction. Hence, |T ∩ S| = 1.

Now, fix any direction d ∈ RE such that de = 0 if e 6∈ E(S) and ∑e∈E(S) de = 0. We show that
for small enough ε > 0, we have x + εd, x− εd ∈ Pst. Note that by choosing ε small enough, we
can always ensure that all currently non-tight constraints are still satisfied. Hence, it remains to
check that moving in the direction d does not change the value of all tight constraints. For any
tight set T, either |S ∩ T| ≤ 1 (in which case moving in the direction d doesn’t change x(e(T))), or
|S∩ T| > 1, which by our previous observation implies that S ⊆ T (since S and T do not cross and
|S| is minimal). Since ∑e∈E(S) de = 0, the constraint T is still satisfied after moving. This proves
the claim.

Note that this immediately implies that the vertices of Pst are precisely the integral spanning
trees of G.

Corollary 1.3. Every vertex of Pst is integral.

Now, given x ∈ Pst which has fractional coordinates, we can perform the following update:
find a direction d with exactly two nonzero coordinates so that x + εd ∈ Pst and has a new tight
constraint (this could include an edge becoming integral) and that x− δd ∈ Pst and has a new
tight constraint for ε, δ > 0. Now, move to x + εd with probability p and x− δd with probability
(1− p) so that x = p(x + εd) + (1− p)(x − δd) (to preserve E [x]), i.e. choosing p = δ

ε+δ . We
repeat this process until x has no more fractional coordinates. We show that this algorithm takes
O(|V||E|) steps.

Lemma 1.4. After O(|V||E|) steps, the solution x becomes integral.
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Proof. We show that every O(|V|) steps, at least one new edge of x becomes integral, which will
imply the claim.

After performing a rounding step, a new constraint of x becomes tight. If a new edge of x
becomes integral, we are done. Otherwise, we have some new tight set T. Let S be the minimal
nontrivial tight set before the rounding step. We know that S and T intersect in at least one edge
and S ( T (or else x(e(T)) would not have changed). Hence, S ∩ T is a nontrivial tight set for
the new x. This implies that if no new edge becomes integral, the size of the minimal tight set
decreases. Thus, after at most |V| steps, some new edge must become integral, as desired.

In future lectures we will use this framework to prove the following:

Theorem 1.5. Let x ∈ Pst. Then, if T is the random tree produced by swap rounding, the following holds:

1. P [e ∈ T] = xe for all e ∈ E.

2. P [S ⊆ T] ≤ ∏e∈S xe for all S ⊆ E, i.e. the distribution over trees produced by swap rounding is
negatively correlated.
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